Abstract Details

Topological Segmentation: How Dynamic Stability Can Solve the Combination Problem for Panpsychism  Andres Gomez Emilsson (Qualia Research Institute, Colma, CA )   P1

The combination problem complicates panpsychist solutions to the hard problem of consciousness (Chalmers 2013). A satisfactory solution would (1) avoid strong emergence, (2) sidestep the hard problem of consciousness, (3) prevent the complications of epiphenomenalism, and (4) be compatible with the modern scientific world picture. We posit that topological approaches to the combination problem of consciousness could achieve this. We start by assuming a version of panpsychism in which quantum fields are fields of qualia, as is implied by the intrinsic nature argument for panpsychism (Strawson 2003) in conjunction with wavefunction realism (Ney 2013). We take inspiration from quantum chemistry, where the observed dynamic stability of the orbitals of complex molecules requires taking the entire system into account at once. The scientific history of models for chemical bonds starts with simple building blocks (e.g. Lewis structures), and each step involves updating the model to account for holistic behavior (e.g. resonance, molecular orbital theory, and the Hartree-Fock method). Thus the causal properties of a molecule are identified with the fixed points of dynamic stability for the entire atomic system. The formalization of chemical holism physically explains why molecular shapes that create novel orbital structures have weak downward causation effect on the world without needing to invoke strong emergence. For molecules to be "natural units" rather than just conventional units, we can introduce the idea that topological segmentation of the wavefunction is responsible for the creation of new beings. In other words, if dynamical stability entails the topological segmentation of the wavefunction, we get a story where physically-driven behavioral holism is accompanied with the ontological creation of new beings. Applying this insight to solve the combination problem for panpsychism, each moment of experience might be identified with a topologically distinct segment of the universal wavefunction. This topological approach makes phenomenal binding weakly causally emergent along with entailing the generation of new beings. The account satisfies the set of desiderata we started with: (1) no strong emergence is required because behavioral holism is implied by dynamic stability (itself only weakly emergent on the laws of physics), (2) we sidestep the hard problem via panpsychism, (3) phenomenal binding is not epiphenomenal because the topological segments have holistic causal effects (such that evolution would have a reason to select for them), and (4) we build on top of the laws of physics rather than introduce new clauses to account for what happens in the nervous system. This approach to the binding problem does not itself identify the properties responsible for the topological segmentation of the universal wavefunction that creates distinct moments of experience. But it does tell us where to look. In particular, we posit that both quantum coherence and entanglement networks may have the precise desirable properties of dynamical stability accompanied with topological segmentation. Hence experimental paradigms such as probing the CNS at femtosecond timescales to find a structural match between quantum coherence and local binding (Pearce 2014) could empirically validate our solution to the combination problem for panpsychism.